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Abstract

Defining an optimal schedule for arbitrary algorithms on a network of heterogeneous ma-
chines is an NP complete problem. This paper focuses on data paralle] deterministic neighbor-
hood computer vision algorithms. This focus enables the linear time definition of a schedule
which minimizes the distributed execution time by overlapping computation and communication
cycles on the network. The static scheduling model allows for any speed machine to participate in
the concurrent computation but makes the assumption of a master/slave control mechanism using
a linear communication network. We investigate the limitations of the static scheduling model
based on statistical descriptions of the model parameters. Using statistical models, an approxi-
mation of the schedule length density function is derived. This statistical model is used to estab-
lish better approximations of schedule length.
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1. Introduction

In the past, many studies have been performed analyzing the capabilities of various parallel
processor ~ vision algorithm mappings. Thorough surveys can be found in [17][3][2][4][5][16].
Most of these efforts focus on the mapping of a single machine to a single algorithm, or mapping
a suite of algorithms to a single architecture [17]. Most of the conclusions made in these studies
are based on the architectural similarities between the hardware communication configurations
and the communication patterns inherent in the vision algorithm (i.e. vision tasks tend to have
highly regular communication). Recent research efforts have discussed the mapping of computer
vision tasks to networks of workstations with the assumption of homogeneous workstation clusters
[11][7]. Additional efforts have focused on scheduling suites of independent programs onto net-
works of heterogeneous machines [10]. This paper relaxes the assumption of homogeneous
workstation clusters and independent program suites. It focuses on the distribution of a single
program on a set of architectures connected by the PVM message passing library [6][13]. A frame-
work is presented for the polynomial time static scheduling of deterministic local communication
algorithms onto a suite of heterogeneous machines using linear communication. In order to evalu-
ate the effectiveness of the static schedule, a nondeterministic model is defined.

The paper is organized as follows. Section 2 presents the background and motivation. Section
3 develops the analytical description of the scheduling process and introduces a set of conditions
necessary for the minimization of the execution time. Section 4 presents the scheduling algorithm.
Section 5 presents several low level computer vision tasks and their corresponding scheduling
models. Section 6 introduces a statistical model of the schedule. Section 7 demonstrates the use
of the statistical model for predicting schedule length of a distributed convolution algorithm. Sec-
tion 8 presents conclusions and future work.
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2. Background

Efforts have been made to develop an Automatic Visual Inspection System (AVIS) for use
with various aerospace engine components. These components include high pressure turbine
blades (aircraft), injector baffles, oxidation posts and annulus rings (spacecraft). AVIS utilizes
several scales of information abstracted from the original image with each scale requiring a set
of low level vision operations [8][14]. The realization of the AVIS paradigm is limited by the
tremendous computational burden of these low level vision operations. These algorithms include
convolution, difference of Gaussian filtering, morphological filtering, Fourier transform, and
Hough transform. In order to increase the speed of AVIS, distributed solutions were investigated.
Defining an effective distribution onto the various machines available on the LAN requires models
of algorithm decomposition, communication mechanisms, and machine speed for a given algo-
rithm.

3. Schedule Model
Several assumptions are made in the definition of the schedule model. The communication
time, execution time, and algorithm decomposition are assumed to be linear. The control structure
is assumed to be master/slave with no interslave communication. Based on these assumptions,
we construct:
F(n) — a scheduling of N homogeneous tasks onto n machines, Eq.3.1
i=n
where N = z 1; , with each slave machine(i) receiving a task size of n); .
i=1
The time to send data to the slave(i) in the schedule is described by:
— 710 N i
Ty =T S(],l)(overhead) + Ts(i)(transmlt) . Eq.3.2

Similarly, the time to receive data from slave(i) is described by:
— T0 ; :
Ty = Ty (overhead) + T:'(i)(transmlt) . Eq.33

The computation time for slave(i) can also be described in a similar manner:
T = Tgei)(compute ny) - Eq.3.4

These parameters can be defined in terms of communication bandwidth Bi(secs/pixel), commu-
nication overhead, aj(secs), and execution rate, yj(secs/operation) for each slave machine used
in the schedule. Because the model is linear, the computation and communication times are propor-
tional to their corresponding neighborhoods (data sizes), as described below.

T]s(i) = ¢ X Bi’ Eq.3.5
where @5 is the neighborhood associated with sending a task size 1 to a slave(i) .

Toh = 0% X B; + o, Eq.3.6

where ¢? is the send overhead neighborhood .

Tlr(i) = ¢ X B Eq.3.7
where ¢, is the neighborhood associated with task size 1 received from slave(i) .

TOA ES 0 X b + Q. Eq.3.8

@ ¢ X B " where ¢? is the receive overhead neighborhood . d

Tlc[i) = ¢ X Eq.3.9

where ¢.is the neighborhood associated with computing a single task on slave(i) .
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Fig.1 Depiction of Master/Slave Communication and Execution Model

As seen in Fig.1, the linear model enables a direct analysis of the optimality of a given schedule.
The degree of nonconcurrency in the schedule is indicated by the values of @, ®, and . The parame-
ter @ is a measure of the time spent by the master machine waiting for the first processed data
partition to be returned,

n
e =Ty~ ZTs(i). Eq.3.10
i=2

The parameter o; is 2 measure of slave wait time caused by contention with the previous slave
machine for the linear communication channel,

@ = | Teiopy + Tegopy — ( Ty T Te ) J, where |f] = max (0,f). Eg3.11

1

The parameter ’; is a measure of the master wait time caused by excess computation of machine(i)
after machine(i—1) has completed returning its data partition. The effects on the schedule time
can be reduced by previous w; and g values, i.e.

% =L T+ Tey = Te-n = Ty — M- Eq.3.12

The A; term represents the data queue waiting to be returned from the slave processes due to pre-
vious contention for the communication channel,
M= Ao o —xod A =1-el Eq.3.13

As one would expect, large values of @, ® and ¥, result in suboptimal schedules. Typically, these
values cannot be eliminated due to the constraint of integer task size. The total execution time
for a given schedule is:

n n n

T(n) = sz(i) + zTr(1)+ le] + ZXi. Eq.3.14
i=1 i=1 i=2

In order to minimize this execution time, a set of criteria must be established to explicitly define

the effects of the values p, j, and ;. In a previous paper [18], a set of conditions were derived

which define these criteria. Based on these conditions, a linear time static scheduling algorithm

was presented.

4. Scheduling Algorithm
As developed in[18], the minimum schedule length (Eq.3.14 ) for n machines can be found

in which ;=0 and y;=0. This solution corresponds to Tcy + Ty = Ty + Tygy. Using
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i=n
this relation in conjunction with the definition of total task size, Z 1; = N, the n values of
i=1
1;i can be determined explicitly using Gaussian elimination on the n linear equations shown in
Fig.2 .

O Teqy Ty = Ty + Ty

: 4.1
-1 Tco-p T Tu-1y) = Ty + Ty Fa

n
@ > =N

i=1

Fig.2 Set of linear equations defining schedule with y; = 0, w; = 0 for all i

Although no closed form solution for n exists, an appropriate number of slave machines can be
determined by the evaluation of @ as described by conditions developed in[18]. Because the solu-
tion to Eq.4.1 is based on the deterministic values of v;, o; and f;, the static schedule is susceptible
to any observed deviation of these parameters. An analysis of these nondeterministic effects will
be presented in section 6.

5. Low Level Vision Modeling

The low level computer vision tasks needed for the AVIS computations are convolution, dif-
ference of Gaussian, Fourier transform, Hough transform, and morphological filtering operations.
Although explication of these algorithms is beyond the scope of this paper, thorough discussions
can be found in [1]{4][5][12][15][16][17]. For the purpose of this study, the key algorithmic ele-

ments are contained in the model parameters, Y;, c Ps. Pc, @ . These algorithm specific param-
eters are presented in Fig.3.

Convolution DoG Morphological 2D FFT Hough
secs secs secs secs secs

Yi ult + add “mult + add 2logical Ops cmpix(mult + add) | molt + trig_lookup
o M2N (M2 + M) BN Niog,N #image pixels
o, N N N N 0
P, N N N N 1
¢! | ME+M-DN) M2 +M24+(M; —DN) (B+ (M=DN) 0 N?
9r 0 0 0 0 0

where M; is the size of the square kernel, N is the image size and B is the maximum size of the rectangular kernel.

Fig.3 Table of scheduling parameters for the low level vision algorithms

6. Statistical Properties

In order to proceed with a statistical analysis, it is necessary to make assumptions about the
density distribution of the schedule parameters o, B; and ;. Normal densities are assumed, and
the sample means and variances of these parameters are used as unbiased estimates of the mean
and variances. These means and variances are defined as:
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We = sample mean of communication overhead to slave machine i

Oy = standard deviation of communication overhead to slave machine i

wg = sample mean of communication bandwidth to/from slave machine i
og = standard deviation of communication bandwidth to/from slave machine i
Uy = sample mean of execution rate of slave machine i

standard deviation of execution rate of slave machine i

8
I

We represent the communication overhead as arandom variable O;, the communication bandwidth
as random variable C;, and the execution rate as random variable Gj. The density distributions
for these random variables are given in Eq.6.1 .

1 _ (s-uay)’ 1 - <X-PB‘) 1 _ ("_"’Yi)z
e 23, f(C)= e 5 LG =

e =, Eq6.l
Ouy 2 o om oy

These variables are assumed to be normal and independent, hence any linear combination of them
is also a normal random variable with variance and mean defined as:

n n n n
02i = varianceiz cixi] = Z cfof ,ui = mean[z cixi] = zciui ,Eq.6.2
ex; : :

=1 i=1 £, 5% =1 i=1
i=1

f(Oy) =

i
i=1

where x; is a normal independent random variable and c; is a linear multiplier .

Representing Eq.3.14 in terms of these random variables is complicated by the parameter A, (as
defined in Eq.3.13 ). Assuming that A; =0, an upper approximation of T(n) can be defined:
n n n

T) = Z Tyiy + Z Ty + le) + Z [ Ty + Teiy = Teg-1) = Trg-nl -Eq6.3
i=1 i=1 i=2

Representing the observed time, T(n), as arandom variable Z, we examine the upper approxima-

tion of Z in terms of the random variables W, X, and Y;.

n
Z=W+[X]+ > [Y]. Eq.6.4
i=2
These random variables are defined as combinations of the random variables representing the start-
up overhead, communication bandwidth, and execution rates of the slave machines, O;, G, and
G;, respectively. The definition for W and its corresponding density is given in Eq.6.5. The
definition for X and its corresponding density is given in Eq.6.6 , and the definition of Y; and
its corresponding density is given in Eq.6.7 .

I
W= zn:( 0 + (th)s + ¢2)Ci) + 2( O; + (Tliq)r + ¢9)Ci) Eq.6.5
W) = o ion e 2% , where Ky, Oy are given by Eq.6.2.
X = ¢ Gy — ,zz( 0, + M ¢s + ¢ C}) Eq66
2
f(X) = —2 e_(x:%?) , where uy , Ox are given by Eq.6.2 .
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Yi = M9JG; — My $IGi_; + (0; + (ids + AC;) — (O;_; + M1 + 9 C;),

_ ("'"Yi)z

f(Y) = —— e, Eq.6.7

where Wy;, Oy, are given by Eq.6.2.

Asdescribedin Eq.6.5,Eq.6.6,and Eq.6.7 , the density functions for W, X, and Y are normal.
The mean for W is strictly greater than zero, whereas the means for X and Y; can be greater or
less than zero. If the X and Y; random variables were not truncated at zero as indicated in Eq.6.4 ,
the composite density function for the upper bound of Z would be a simple summation of normal
variables. The truncated normal density is defined with a delta function at the origin as described
in Eq.6.8 .

(rny)”

X ifX=0 By 8(x) + —ie— e %% if x = 0 Eq.6.8
X] =[0 X <0 fUxh =] oxv2m ” 4
0 if x <0
(-’

1

oy V21

The inclusion of the truncated normal curve into the composite density function makes the
definition of f(Z) more difficult. Assuming the three random variables, W, [X/|,|Y;] arein-

e % dx,and 8(x) is the Dirac delta function .

where 0y =

‘O

8

dependent, we can define the density of their sum as the convolution of their densities [19]. As
such, the density of the upper bound of Z can be defined as:

£42) = ( fW) % f{1X])) * f{1Y,]) 5 €[ Y5]) - (L Ya))), Eq.6.9
where f(W) x f{|X]) = f fw(Z = X0f | (X)dX .

The difficulty introduced by the truncated normal curve is based on the integral of Eq.6.9 . The
limits of integration are redefined as:

[ _ (x- “x)2

| dX. Eq.6.10

Wy f(|X]) = J fw(Z — X) 16x3(X) +

0

1 €
oy /2n

This integral has no closed form solution. Numerical solutions, however, offer a simple solution,
and can quickly define a numerical density for the lower bound of random variable Z. After this
density is defined, numerical integration can be performed on f(Z) to define confidence intervals
on the predicted schedule time.

7. Experiments

Asexplained insection 6, an approximate density function for the schedule time can be defined
using Eq.6.9. Given aschedule derived using Eq.4.1, the probability that the schedule will exhibit
an observed speedup can be obtained. To demonstrate the use of this information two disjoint
slave sets were arbitrarily defined. These two slave sets were used to examine the correlation
between the observed schedule times and those predicted by the deterministic and nondeterminis-
tic models.
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The schedule length density approximations for slave set 1 and slave set 2 are depicted below
inFig.4 . In addition to the density, the observed schedule time (averaged over 30 trials), the pre-
dicted deterministic model time and the density means are presented. These values are summa-
rized below in Fig.5 for several kernel sizes of the convolution algorithm. In general the observed
schedule times were greater than that predicted by the deterministic model and less than the nonde-
terministic mean. An exception to this observation can be found in the 7x7 convolution for slave
set 2 in Fig.5.

observed time
. 10.54 secs

. observed time
theoretical mean 9.59 secs

11.01secs £(Z) |

theoretical mean

£(2) 10.32 secs

predicted time
"|predicted time -1 8.67 secs

9.38 secs

1
FTTIryrrreyrrrryrrrTrrrreyaTrrerrim rmrrrrerrrrerrrT Ty rrTrryrTrrrrrrrl

Slave_pool 1 Schedule length(secs) Slave_pool 2 Schedule length(secs)

Fig.4 Density approximations of two disjoint slave pools for 17x17 convolution
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Fig.5 Predicted time, observed time and theoretical mean for slave sets 1&2

8. Conclusions

Focusing on linearly partitionable problems enables the definition of optimal scheduling
conditions. These conditions enable a schedule to be defined in linear time. These conditions,
however, are based on the assumption of deterministic execution and communication rates. As
machines and networks exhibit nondeterministic behavior, this static model exhibits schedule
times that deviate from the deterministically predicted values. The nondeterministic model en-
ables an additional prediction of schedule behavior based on network variance. This nondetermin-
istic prediction better describes the average observed schedule length than the deterministic pre-
diction. The ability of the statistical model to accurately depict observed variance is currently
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under investigation. If It is hoped that future extensions of the scheduling model will incorporate
the nondeterministic model into the algorithm decomposition method.
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